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1. INTRODUCTION

Throughout X = {X(t), t € T} is a real symmetric a-stable (SaS) process with

: 0 < a<2and T an interval on the real line; i.e. all finite linear combinations

Elr\le anX(tn) are SaS random variables.

X is Markov if for all s <t in T, the conditional distribution of X(t) given X(u),

u <'s, "coincides" with the conditional distribution of X(t) given X(s) alone, in thc cense
, that for eny u, <'s, i=1....,n, and any Borel set E the equality P{X(t) € E(X(ul), ey

X(up), X(s)} = P{X(t) € E|X(s)} holds with probability 1. As is well-known the

Markovian property is equivalent to the conditional independence of the past o{X(u),
K u<t} and future of{X(u), ut} o-fields given the present o{X(t)}, and thus it is

symmetric in time and could be defined by requiring that for all t <'s in T the conditional L
;' distribution of X(t) given X(u), u > s, "coincides" with the conditional distribution of X(t) .-:
' given X(s) alone. Conditional distributions of non-Gaussian stable processes are generally '.E-
very difficult to compute (and generally not stable) and it is thus not easy to check for the 1
p Markovian property. For this reason we introduce a weaker Markovian property which is
: amenable to some analysis and which concentrates on regressions.

For 1 < a < 2 we have &|X(t)| < » and we say that X is left weakly Markov if for all E
_:' s <t in T with probability 1, ?.;:—
{ ~
)
! E{X(t)[X(u), u < s} = &{X(t)| X(s)}, 3
1]
: and right weakly Markov if for all s < t with probability 1, :-.
B{X(5)| X(u), u 2 t} = E(X(s)| X (W)} .

\
y In the Gaussian case a=2 the left and right weak Markovian properties are
equivalent, and they are also equivalent to the Markovian property. Furthermore, there is

only one stationary Gaussian process which is Markov, namely the Ornstein—Uhlenbeck
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")‘M. In contrast there are stationary

process with covariance function R(t) = R(0)e
non—Gaussian SasS processes with 1 < a < 2 which:
(i) are left weakly Markov, without being right weakly Markov, and vice versa
(cf. Section 7);

(ii)  are left and right weakly Markov without being Markov, e.g. the sub-
Ornstein—Uhlenbeck processes (Corollary 4.2);

(ili) are Markov, namely the SaS Ornstein—Uhlenbeck processes in (2.14) whose
covar.ation function is the nonsymmetric double exponential function in
(2.15);

(iv) have the symmetric covariation function R(t) = R(O)e"’\ltI but are neither
left nor right weakly Markov, namely the harmonizable process in (6.3).

Two distinct SaS stationary Markov processes are identified in this paper. These are
the right and the left SaS Ornstein—Uhlenbeck processes, which can be represented
respectively as decreasing and increasing time changes of SaS Lévy motion (cf. (2.14) and
(3.3)), or as nonanticipating and fully anticipating moving averages of SaS Lévy motion
(Theorem 5.1 and (5.4)), and are the stationary solutions of certain first order stochastic
differential equations driven by SaS white noise. Even though there might be further SaS
stationary Markov processes, none is currently known. Such processes are not sub-
Gaussian (Corollary 4.2) or harmonizable (Theorem 6.1); and they are neither
nonanticipating nor fully anticipatory invertible moving averages, as the left and the right
Sa$S Ornstein-Uhlenbeck processes are the only such SaS moving averages (Theorem 5.1
and page 33). Finally, neither one of their pairwise conditional distributions can be
a—stable and symmetric, since the left and the right SaS Ornstein—Uhlenbeck processes
are again the only ones possessing this property (Theorem 3.1). This may explain the
difficulties in constructing other Sa.S stationary Markov processes, if indeed there are any.

Without requiring stationarity, the Gaussian case is still quite simple: All Gaussian

Markov processes are essentially time changes of Brownian motion, see Tismoszyk (1974),
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Borisov (1982) and Wong and Hajek (1985). For non—Gaussian SaS processes with .
a

. 1 < @ < 2 the picture is more complex and rich. A necessary condition for left weak
Markovianness is given in Theorem 2.1 in terms of the covariation function, and its p
o,
- 3 . . 3 . . . . 3 r
solution is found, i.e. in the nonstationary case (2.5) and its generalization, and in the b
stationary case (2.9). While all time changes of Lévy motion have covariation function of )
.
this form (i.e. (2.5)), and are in fact Markov, they do not exhaust the class of SaS processes :
>
with covariation function of this fcrm, e.g. Lévy bridge (see Example 2.1). -
o

Time changes of Lévy motion are considered in Section 3 where they are shown to be
)
the only SaS Markov processes whose pairwise conditional distributions are stable and :
\

>

AN

symmetric (Theorem 3.1). In the non—Gaussian stable case there is also a marked

asymmetry: The SaS Markov processes whose right to left and left to right pairwise

x|

L A ]
'
4

P

conditional distributions are stable and symmetric are few and trivial when 1 < o < 2,

rf A

whereas in the Gaussian case a=2 they coincide with the entire class of Gaussian Markov

processes.

o+

-’t’l

An auxiliary result of independent interest is given in Proposition 3.1 and Corollary

‘.r 7;.4"

3.1, characterizing the stability of the conditional distribution(s) of random variables that

o

o'

are jointly Sas.

27

i

Sub~Gaussian processes are left (right) weakly Markov if and only if they are

‘{'

-
* »
.J

essentially time changes of sub—Brownian motion, except for trivial cases, and they are not

.,,
s;u_.

»

Markov (Theorem 4.2). In particular, the only weakly Markov stationary SaS

R

v
L)

sub—Gaussian processes are the sub—~Ornstein— Uhlenbeck processes (Corollary 4.2).

- ®_»
»

Sections 5 and 6 consider two specific classes of stationary SaS processes, moving

3

L)

averages and harmonizable SaS processes. It is shown that in the case of either

nonanticipating or fully anticipatory invertible moving averages, the weak Markov

TTE

property cannot exist without full Markovianness and it is realized only by the right and

the left SaS Ornstein—Uhlenbeck processes correspondingly (Theorem 5.1 and page 33).

<

L5}

In sharp contrast to the Gaussian case a=2, it turns out that for the stable case
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2. GENERALITIES

A SaS process X can be represented by an integral of the form

(2.1) X(t) = jU f(tu) dZ(u), teT,

where Z is a SaS random measure on some o—finite measure space (UX.u) (i.e. Z is an

independently scattered o-additive set function on Eﬂ = {E€X uE)<wo} and ”'
gexp{itZ(E)} = exp{-#(E)|r|?} for E¢ Eﬂ) and {f(t,"),t € T} C L, (UZu) (Kanter
(1972), Kuelbs (1973) and Hardin (1982)). All quantities are real-valued (except in

ﬁ Section 6, where complex—valued processes are discussed) and g is called the control )

measure of Z. For every g € La(u) the integral [gdZ is a SaS r.v. with &exp{irfgdZ} =

o exp{—|r|aj|g| ad;z} and is linear in g. Specific examples of such representations of SaS

processes will be considered in Sections 5 and 6.

The covariation function of X is

R(t,s) = Cov[X(t), X(s)] = JU (6,0 £(s,0) <> dg(u),

= where x <47 = |‘<[q sgn(x), and it does not depend on the specific representation of X (for

more on the covariation see Section 3). In the Gaussian case, a=2, the covariation is a

!-. >0 ”n‘-"..‘

[ multiple of the covariance, R(t,t) determines the distribution of X(t), and the numbers

R(t,t), R(s,s), R(t,s) determine the joint distribution of X(t), X(s); thus knowledge of R on

,. TxT determines the distribution of the (zero—mean) Gaussian process X. In the : '.
E non—-Gaussian SaS case 1 < @ < 2, the covariation is not generally a symmetric function of §
- its arguments and is linear only in the first argument, R(t,t) detcrmines the distribution of R
\ X(t), but the numbers R(t,t), R(s,s), R(t,s), R(s,t) do not generally determine the joint ‘
E distribution of X(t), X(s). Thus knowledge of the covariation function R on TxT generally :‘

does not determine the bivariate distributions of the SaS process X. Still, as we shall see,

the covariation function plays a role partially analogous to the role played by the

':'l‘rr

Ca"a " "s"



covariaace function in the Gaussian case.

A basic result on the left weak Markovian property is the following:
Theorem 2.1. X is left weakly Markov if and only if
R(t,s _
(23) Cov[X(t) ~ <57 X(8), Y]=0

for all s <t and all Y € sp{X(u), u < s}, where the closure is in probability. If X is lefl

weakly Markov then
(2.4) R(t3,t2) R(t,_,,tl) = R(t3,t1) R(t2,t2) for all b $tg S tg.

A covariation function R with R(t,s) # 0 for alls < t in T satisfies (2.4) ifand only ifit isof

the form
(2.5) R(ts) = H(t) Ks)S® > forall s<t,

where the functions K, H are unique up to a multiplicative constant, have the same sign and

K(t)/H(t) is positive and nondecreasing on T.

Proof. It is known (see Kanter (1972)) that

SX()1X(9)) = R X(s).
Therefore X is left weakly Markov iff
f _I{tS
&IX(t)|X(u),uss} = s X(s), Y s<t,

and by [3, Proposition 1.5], a necessary and sufficient condition for this is (2.3) for all s <t
and Y € sp{X(u), u <s}.

Now if X is left weakly Markov, taking Y = X(u), u < s, we obtain

R(t,u) = }}% ;’: R(s,u), Y u<s<t,

o, »
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which is (2.4). The general form (2.5) of the solution of (2.4) is obtained as in Borisov
(1982) by taking, for some interior point tyof T, K(t)<&—1>= R(t,.t)
= R(t,t) R(to,to)/R(t,to) fort >t , and H(t) = R(t,t)/R(tO,t) fort < tor

= R(t,to)/R(tn,LO) fort > ty: Since by (2.2), R(t,t) > 0 and by assumption R(t,t) # 0, it

<
for t < tor

follows from 0 < R(t.t) = H(t)K(t)<® > that K and H have the same sign at each point.

Also from (2.2) and Holder's inequality we obtain
1-
(26) IR(s)] < (RN (Riss)) 7

and substituting from (2.5) we have |K(s)/H(s)| < |K(t)/H(t)|. Since KH L is positive, it
is nondecreasing on T. Conversely, (2.5) implies (2.4) immediately and the property Ku L.
nondecreasing, is needed to show that R given by (2.5) is covariation function. The
simplest way of showing this is by constructing a SaS process with covariation (2.5), as was
done in the Gaussian case in Wong and Hajek (1985), p. 64. Indeed, using the time change
(t) = {K(t)H_I(t)}a_1 (nondecreasing), and the SaS Lévy motion L = {L(t), t > 0}
which has stationary independent increments, L(0) =0, and ¢&exp{ir[L(t)-L(s)]} =

exp{~|r|*|t-s|}, we can introduce the SaS process
(2.7) X(t) = H(t) L(r(t))
whose covariation function is for s < t,

Cov[X(t),X(s)] = H(t)H(s) <*1> Cov{L(r(t)), L(7(s))]

= H(t)H(s)<*1> r(s) = H(t)H(s)<¥> (RIS }(H

S
(2.8) = H(OK(s) <% 1> = R(t.s)
since K(t)H(t) > 0. a

In the Gaussian case a=2, the covariation is linear in its second argument (as well as
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in its first), and the necessary condition (2.4) is also sufficient; thus when R(t,t) # 0, t € T,
conditions (2.3), (2.4), (2.5) and (2.7) are all equivalent, and all Gaussian Markov
processes are time changes of Brownian motion. However, in the non—Gaussian SaS case
with 1 < a < 2, generally the covariation is not linear in its second argument and the
necessary condition (2.4) is not sufficient. Also, while the time changes of SaS Lévy
motion (2.7) have covariation function of the form (2.5), they do not exhaust the class of

SaS processes with covariation function of the form (2.5).

Example 2.1 Leuvy bridge.
Again let L be the Lévy motion, and let B(t) = L{t) —tL(1), 0 <t < 1. This is one of
the possible generalizations of the Brownian bridge to the SaS case, a<2. It is

starightforward to check that for this process

(1-t)s[(1-s) ¥ 14 %74 if 0<s<t<l,

R(t.s) = Cov[B(t), B(s)} = {

t(1-8)[(1-8) L4 5971 if 0<t<s<l.

Moreover, B(t) is easily seen to satisfy the condition (2.3) for any Y = Eli;laix (ui),
u; <5, for i=1,2,....k, and, therefore, for any Y € sp{X(u), u < s}. This process is,
therefore, lelt weakly Markov and, in fact, two—sided weakly Markov, since its right weak
Markovianness can be established similarly.

The Lévy bridge B(t) is an example of a two-sided weakly Markov SaS process
which is not a time changed Lévy motion (see (2.12)). Other examples of such processes
are furnished hy the sub—Gaussian SaS processes (see Section 4).

The process B(t) is probably not Markov. It is interesting to note that another
possible generalization of the Brownian bridge, namely B'(t) = (1-t)L[t/(1-t)], 0 <t < 1. s
clearly distinct from B(t) when o < 2 ! B' is a Markov process, and its covariation

function is given by
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(1-t)s(1-6)*2 if 0¢s<t <,
R'(t,s) = Cov[B'(t), B'(s)] = {

t(1-s) %1 if 0<t<s<l,

Not much seems to be known about the role of these processes (if any) in the weak

convergence of empirical processes. o

The solution of (2.4) in the general case, i.e. without the condition R(t,t) # 0 on T,

can be obtained as in the Gaussian case (Timoszyk (1974), Borisov (1982)), in the form

(2.5) on a finite or denumerable union of disjoint squares around the diagonal of TxT (and
zero elsewhere).

When X is stationary (T = [Rl) then R(t,s) depends only on t-s and we write R(t,s)
= R(t-s). When a=2 the converse is also true, but this is not generally true when
1 < @< 2. When R(t,s) = R(t—s) for all t,s € [Rl, we say that X is covariation stationary.

In the presence of stationarity Theorem 2.1 reduces to the following simpler form.

Corollary 2.1. LetT = R, If X is covariation stationary and left weakly Markov, then

for some 0 < A < o,

(2.9) R(t) = R(0)e forall t > 0.
[fX is stationary, then it is left weakly Markov if and only if
(2.10) CoviX(t) - e MX(0), Y] = 0

for some0 < A<w and allt > 0,Y € sp{X(u), u<0}.

Proof. If X is covariation stationary and left weakly Markov, then (2.4) is satisfied and

can be written in the form

R(u)R(v) = R{u+v)R(0) forall u,v>0.
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' Since by (2.6), |R(t)| < R(0), Vt, R(t)/R(0) is bounded and therefore the solutions of the :
o above equation are given by (2.9) (see Feller (1968), p. 459) a

K

! : When A = 0 in (2.9), R(t) = R(0) for all t > 0, i.e. equality holds in Holder's

(.‘. inequality (2.6), and thus for each pair s < t we have X(t) = X(s) a.s. Hence X is equal in .
}“ law to a constant process {C(t) = aZ, —w < t < o}, a > 0, Z a standard SaS r.v., and every :
i i‘ separable modification of X has constant paths. At the other extreme, when A = 4, we ‘
e have R(t) = 0 for t > 0 and R(0) > 0, so that the stationary process X is not continuous in ;
; j probability and thus its sample functions do not have measurable modifications ([2], p. 3), “
_‘: i.e. it is very irregular. The interesting case then is when 0 < A < ». In the Gaussian case t‘

a=2, the symmetry of R and the fact that it determines the distribution of X, imply that

the only stationary, Gaussian, left weakly Markov processes are the Ornstein~Uhlenbeck

o processes with covariance function R(t) = R(O)e—’\m, -w <t <o, which are in fact
_ Markov. As we shall see in the non—Gaussian SoS case 1 < a < 2 there exist left weakly
Markov stationary processes that are not Markov (see e.g. Section 4).
“' Results analogous to Theorem 2.1 and Corollary 2.1 are clearly valid for the right :
. weak Markovian property. We will not repeat the details here; we only mention that (2.4) ~
-_; takes the form ‘.
5 _ .
Ly R(tl,t2)R(t2,t3) = R(tl,t3)R(t2,t2) for all t, < to < tg, r
;" and (2.5) takes the following form: _
2 .
& R(t,s) = H(s)K(t) <@ 1> for all t ¢s, :
ol v
- where K(t)/H(t) is positive and nondecreasing on T. Y
1 -,
;‘. Therefore, if X is two—sided weakly Markov with R(t,t) # 0 on T, then )
i .:
4
\\
A N
3 N
‘.v ,
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s
" 11 RiLs) { H, (0K, (5)<*, s<t, Z
2.11 t,8) = ;
! <o-1> y
y Hz(t)K2(s) , t<s. 5
> 7
When 1 < a < 2 the two pairs of functions Kl’ Hl’ and K2, H2 need not be identical, as is
the case with the time changes of SaS Lévy motion defined by (2.7) where A
N
A ‘>
: (212) Hy(t) = H ()7 %7K ()77, Ky(t) = Hy(v). 2]
! These Lévy motion time changes are in fact Markov, as follows from r
. W
) H(t Y
; X(t) = i X(s) + H(t) {L((1)) - L(7(s))}, -
W ‘
) .
- and they have o-stable conditional distributions symmetric about {H(t)/H(s)}X(s) for ;
E s <t ::
" :
o
; # {explirX(t)]| X(u),uss} = exp{ir %%}X(s)}gexp{irH(t)[L(r(t))-L(r(s))]} g
£
¥ . H{t o o tq
: (2.13) = expir gfH X(s) - [r] *[HE) | {r(0)-r()]} 3
: :
; = & {exp[irX(1)]| X(5)}. 7
. i
E In particular every two-sided weakly Markov stationary SaS process has :
vy ~ £
- —/\lt - '
3 R(0)e , t20, -
] R(t) = Ayt ,
: R(0)e *, <0, ~
_Z: for some 0 < Al”\z <w. When 1 < a < 2, the exponents )\1 and A2 need not be equal, see
y (2.15). g
X Among the time changes (2.7) of SaS Lévy motion the only stationary ones are of the -
LY A
by form !
" _ ~3
‘ (2.14) X(t) =ae M LEM™Y), w<t<w :
3 S
| for some 0 < a < o, 0< A< and in fact it can be easily seen they are the only ones N
N .




with stationary bivariate distributions (i.e. for these time changes, bivariate stationarity

implies stationarity). When 0 < A < o the Markov processes (2.14) will be called SaS
Ornstein—Uhlenbeck with parameters @ and A. Using (2.7), (2.11) and (2.12) we conclude

that the covariation function of the SaS Ornstein—Uhlenbeck process (2.14) is given by

RO, 130,

(2.15) R(t) = ROEEDA, ¢ (o

and is not symmetric unless a=2.
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3. MORE ON TIME CHANGED LEVY MOTION

In Section 2 we saw that time changes of SaS Lévy motion are Markov with
conditional distribution of X(t) given X(s) o—stable and symmetric, for any s < t. Here we
show that all SaS Markov processes with right to left conditional distributions (as above)
a-stable and symmetric are made up from independent segments of time changed Lévy
motion; and in particular the only stationary ones with dependent values are SaS
Ornstein—Uhlenbeck processes.

Recall that a SaS Lévy motion L = {L(t), t >0} is a process with stationary

independent increments, L(0) = 0 a.s., and for allreal rand t, s > 0,
(3.1) 8 exp{ir(L(t)-L(s)]} = exp{-|r|* |t-s|}.

If 7(t) is positive and nondecreasing on T, and H(t) is positive on T, then the time change

of the SaS Lévy motion
(3.2) X(t) = H(t) L((t)), teT,

is Markov and for s < t, the conditional distribution of X(t) given X(s) is a-stable and
symmetric, cf. (2.13).

Note that we can regard the above time change as increasing (the new clock r(t) is
an increasing function on T). Similarly, we can define a decreasing time change of SaS
Lévy motion by taking the clock 7(t) in (3.2) to be a decreasing nonnegative function on T.
Of course, the new class of SaS processes obtained in this way consists of Markov
processes. Moreover, they have the following common property for s > t, the conditional
distribution of X(t) given X(s) is a—stable and symmetric. These properties of the time
changes of SaS Lévy motion are quite remarkable. We will see in this section that there

are not many Markov SaS processes whose conditional distributions are a-stable and

-------

symmetric.
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The conditional distributions of every Gaussian process are Gaussian and symmetric

(around the conditional mean). Non—Gaussian stable processes in general do not have
ﬁ stable conditional distributions. Our aim in this section is to characterize the classes J(Ef)
‘ \ and Jlgr) of all SaS Markov processes X which have the property that for alls < t (s > t,
& correspondingly) the conditional distribution of X(t) given X(s) is a—stable and symmetric.
: Of course if 1 < o < 2 and Z{X(t)|X(s)} is symmetric about some point, this point of
o

symmetry is necessarily the conditional mean &{X(t)|X(s)}.

X Theorem 3.1 characterizes the processes in thf) and Jt((]r ) when 1 < @ <2 Those

La't with covariation function nonvanishing everywhere are time changes of Lévy motion, as in

(3.2). The general process in Jlgf) (I((lr)) is then made up of independent segments of

R Lévy motion time changes on disjoint intervals. There are two extreme (and uninteresting)
:; cases: the (very smooth) constant process (X(t) = Z a.s. for each t), and the (very rough)
: process consisting of independent random variables. In the stationary case the latter A
- process would have independent and identically distributed SaS r.v.'s, with scale parameter

a > 0, and we denote it by Ia = {Ia(t), - o < t < ©}. The only stationary processes in

- thl) are the SaS Ornstein~Uhlenbeck processes (2.14) and those with iid values: I o The

only stationary processes in thr ) are the inverted SaS Ornstein—Uhlenbeck processes -

defined by

(3.3) X(t) = 2™ Le™ ),  —m<t<w a>0, A20,

and the processes I,. The SaS Ornstein—Uhlenbeck processes (2.14) and (3.3) coincide

trivially in the Gaussian case a=2, but not in the case a < 2 (more on this point is said in

Theorem 3.2). 3

In the statement of Theorem 3.1 equality in law, ¢, means equality of all finite

dimensional distributions.

............
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Theorem 3.1. Let X belong to ./ltg[) (correspondingly, .A’(&r)) for somel < a < 2. o

:: . () If its covariation function satisfies R(t,5) # 0 foralls <t inT, then y

)
'\

" & .
» {X(t),t € T} = {H(t)L(7(t)),t € T} ~
) !
Jor some positive, nondecreasing (correspondingly, nonincreasing) function v on T, and .

~
' some positive function H on T. -3
a ':

(¢0)  If X is stationary then either

r{}

‘l.t. 'n,l

[
A
R x4 A
" {X(t), w<t< w} = {ae_AtL(eaAt), -0 <t < w} .';'
.I ! ..\
¥ forsomea > 0and 0< X <o (correspondingly, 0 < =\ < w), or else for some a > 0, !
§ s Ei
- {X(t), w<t <o} = {Ia(t),—w<t < w}. :::
i\ (3
: In order to prove Theorem 3.1 we need the following properties of bivariate SaS !.:
L af
i distributions which are of independent interest. Let us recall that the r.v.'s X; and X, are o
) ™
! jointly SaS if their joint characteristics function is of the form :
. : a -
: 8 exp{i(r X +19X,)} = exp{ - f82|r1x1+r2x2| dI'(x;.x,) } o
J f
¥
for all real Ifos where I' is a uniquely determined symmetric finite measure on the unit .
s circle S, in R%. Whenl< a< 2, the covariation of X, with X, is given by .}:
b S
L] F\
' _ <a-1> -
: Cov(X,, X2] = ]S2x1x2 dI‘(xl,x2) -
)
[5] (which is consistent with (2.2)). We denote by ”Xi”a their scale parameter HXillg = T
s js |x:] adI‘(xl,xz) = Cov[X;, X;], i=1,2, and we have by Kanter (1972), 4
n 2 1 1 i :-. Y
2 .
{
. N
k) :‘- X
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A
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Cov[X2, XI] A
¥XolX) = wovxx X1 = Xy
1
! Proposition 3.1. Let Xy and X2 be jointly SaS and 1 < a < 2. Then the following are
equivalend.
(8) z(xg‘xl) is a—stable and symmetric.
: (#) X2 -,021X1 is independent ole.
(is)) T is concentrated on = (0,1), % ((1+p§1)_1/2, p21(1+p21) 1/2
. Under any of these conditions we have
3
L}
y |Cov[X,, X,]|¢
a _ o o a _ a 2 71
(3.4) I|X2-021X1||a = ”x2“a" |921| I|X1||a = ”x2”0 - X ”a(a~1)
1
Xl,X2 are independent  iff Cov[X.Z, Xl] =0 iff poy = 0.
Proof. Assume (i). Then . E‘
g {exp(irgXy)| X} = exp{-|ry| "M(X,) + iryN(X, )}, WA
é 3

€

for some real measurable functions M and N with M > 0. It follows that

N(X,) = &(X,y1X)) = py; X, Let

_ l/a
Z=py X, + M(X)) /2

where Z0 is independent of X1 and & exp(irZO) = exp(-—|r|a), r € Rl. Then clearly

..i’(Zle) = .Z’(XQIXI) and thus .S!(Xl,Z) = .Z(Xl,X.Z). It follows that Z - g1 Xy I

SaS, and thus for some ¢ > 0 and every real r,
a. . _ . 1/a, y _ a
exp(~|r]|"c) = &exp{ir(Z-py;X,)} = Eexp {irM(X,)"/ "Z} = & exp{-[r| "M(X)}.

By the uniqueness of the Laplace transform we conclude that M(Xl) = ¢ a.S.. Then




Z—p21x1 = cZ0 is independent of Xy and this implies that X2—;;21X1 is also
independent of X, proving (ii).
Conversely, assuming (i1) and writing X2 = (XQ—pQIXI) + Py X, we obtain, since

X )(l is Sas,

27 P21
(3.5) & {exP(irzxg)fxl} = exp{—}r2f aNXQ—ﬂmXIHg + ir2p21xl}

so that (i) is satisfied, and in fact the constant M(X;) = c is equal to ||X2—p21X1||g We

also obtain
“XQHZ = ||X2—pglxlllg+ |p21|a ||X1||g,

from which (3.4) follows.

Therefore (i) or (ii) imply
gexp{i(rlxl-!—rQXQ)} = 8exp{i(r1+r2,021)x1 - lrzla]]X2~p21X1]]g}
= exp{-[r,+rypg [ AKX 1% - 5] X1 Xgpp, X, 1%
from which (iii) is evident. And conversely, assuming (iii) we have
6exp{i(r1X1+r2X2)} = exp{-|r,| adl = |r; 41909 | adQ}
for some dl,d2 > 0, and therefore
8 {i{a(Xy=p9; X () + bX ]} = & exp{i[(b-apy; )X, + aX,]}

= exp{-|] % - [b] %4y}

from which (ii) follows. o

Corollary 3.1  Let X1 and X.2 be jointly SaS and 1 < a < 2. Then the following are

equivalent.
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(i) .Z(X.ZIXI) and .Z(X1|X2) are a—stable and symmetric.

it) X1 and X2 are either independent or linearly dependent.

2.1/2

(
(i) T is concentrated on {£(0,1), £(1,0)} oron % (c, (1—<“)"/“) for some
<

Proof. In view of Proposition 3.1, (i) implies that [ is concentrated on the set {£(0.1).
-1 /2

i((1+pgl)_l/, ;)21(1+p21 )} and also on the set {£(1,0), (p19(1+p12) 12,
-1
(1+912) /2

and (iii). u!

)}, from which (iii) follows. The converse is clear, as is the equivalence of (ii)

Proof of Theorem 3.1. Because of symmetry we will consider Jty) only.

(i) Since for all s < t in T, £{X(t)|X(s)} is a—stable and symmetric, it follows from

Proposition 3.1 (cf. (3.5)) that

(3.6) £ {explirX(1)] | X(s)} = exp{~|r| %l X(t)=pX(s)llg + irp,X(s))

1
where p, = R(t,5)/R(s,5) and IX(8)=p, X(s)II§ = R(t,t) - IR(t,s)| ¥/R(s,8) " (cf. (3.4)).
Since X is Markov and R(t,s) # 0 for s < t, by Theorem 2.1, R(t,s) has the representation

(2.5), which implies

IX(6)-p XS = HOK( <= 1) i = 101 ¥ r0)-r(s)).
where 7(t) = {K(t)/H(t)}*\. Thus
3 {expliTX (6] | X(5)} = exp{-|r| *|H(t)| Tr(0)=r(s)] + ir gt X))

which is the same as the conditional characteristic function for Y(t) = H(t)L(7(t)), t € T.
given in (2.13). It follows that Z{X(t)|X(s)} = ZL{Y(t)|Y(s)} for all s < t. It is also
clear from (2.8) that IlX(L)Hg = ll\’(t)llg, so that Z{X(t)} = £{Y(t)} for allt, and since
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both X and Y are Markov, #(X) = Z(Y). The function H may be taken positive without

. loss of generality.

(ii) If X is stationary, by Corollary 2.1, R(t,s) = R(O)e—)‘(t"s) for all s < t, for some {
Y :
N 0<A<w When A = + o, R(t,s) = 0 for all s < t, and by Corollary 3.1 it follows that :

Z(X) = .z’(Ia) for some a > 0. When 0 < A < o, part (i) of the theorem is applicable,

. .
-
: necessarily with H(t) = ae M and (t) = be®** for some a,b > 0. This completes the I

proof. 0 i

- It is worth mentioning that in the Gaussian case (a=2), clearly Jté[) = .A{)r). In E
; contrast when 1 < a < 2 the common processes of th[) and thrr) are few and trivial. :‘
. .
; N
X Theorem 3.2 (i) There is a one~to—one correspondence between th[) and thr) given by ', 1
: X(t) =Y(r(t),t e T, X € J(g[), Y e J(((lr) , Jor any fized function 7: T - T one-to-one, E
E onto, and such that 7(s) > r(t) if s <t (e.g. 7(t) = -t when T = lRl). S
. (it) A process X belongs to Jlgo n .l(gr), I < a< 2 ifand only if it is of the ’,
E following form: for some finite or denumerable set of intervals {In}l:f=1 in T, X(t) = ‘J
: a(L)Xn a.s. for each t € In’ n=1,..,N, where a is a real function, nonvanishing in the E
5 interior of 1 and the r.v.'s {(Xn)l:f:l, X(t), teT)\ Ul:f:lln} are independent. \
:} (itt) The only stationary processes in J{((I[) n J(gr), I < a < 2, are the processes Ia 5_
'l‘:: with tid r.v.'s and the constant processes (X(t) = aZ, w <t < w, a> 0, Z: SaS r.v.). "

Proof. (i) is clear.

p (ii) Suppose X € Jlg[) n Jf{gr). Then by Corollary 3.1, for each s,t in T, the r.v.'s -;

X(s) and X(t) are either independent or linearly dependent. But since X is Markov, if X(t) y

is a multiple of X(s), it will necessarily be a multiple of each X(u) for u in between s and t.

Hence for each t € T there is an interval It such that for all s € It‘ X(s) is a multiple of

.....................
.....
--------------

» L
-------
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o X(t). Denoting by {In}lr\f=1 those intervals among the I, t € T, with positive Lebesgue ;
. measure we obtain the result.
§ J
:: (iii) In view of stationarity, if two r.v.'s of the process are linearly dependent, they "
Vg ;
I' . ) I
K will all be a.s. equal; and if two r.v.'s of the process are independent, they will all be -
§
. independent. O
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4. SUB-GAUSSIAN PROCESSES

Another important class of SaS processes is the class of sub—Gaussian

processes which is defined by
(4.1) X(t) = AY%0(1), ter,

where G = {G(t), t € T} is any Gaussian process and A is a totally skewed to the
right (a/2)-stable random variable (see Feller (1968)) which is positive with

probability 1 and satisfies
(4.2) & exp{-ud} = exp{—ua/2}, u>0.

A sub—Gaussian process (4.1) is easily seen to be a SoS process, and when T = lRl,
X(t) is stationary if and only if G(t) is.

Dur task in this section is to investigate if we can find a Markov, or at least
veakly Markov process among sub—Gaussian processes. The obvious candidates are
the sub—Gaussian processes given by (4.1) with G being Gaussian Markov process.
For example, G(t) could be a Brownian motion; in this case we call the
corresponding process X(t) a sub-Brownian motion. If T = R! and G(t) is Ornstein-
Uhlenbeck process, we call X(t) sub-Ornstein-Uhlenbeck process. The first result

characterizes the weakly Markov sub—Gaussian processes.

Theorem 4.1. Let X be a sub-Gaussian SaS process given by (4.1). Then the following are
equivalent.

(1) X isleft weakly Markov.

(i1) X is right weakly Markov.

(1i1) G is Markov.
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Y Proof. We note for future reference the following fact (see [5]): If (Y;,Y,) isa

zero—mean Gaussian vector in [R2 with 8Y% = EYg =1, 6Y1Y2= p, and if )(1 = A1/2Y1,

: X, =A1/2Y2, where A is distributed according to (4.2) and is independent of
N ) ¢
R (Y[,Yy), then
—al? .
(4.3) Cov Xy, Xy} =272,

Assume (1). Then by Theorem 2.1 the covariation function of X satisfies (2.4)

and by(4.3) we conclude that the covariance function of the Gaussian process G in

e

(4.1) satisfies the same relation. Thus G must be Markov (since it is Gaussian),

i.e. (iii) holds.

=l
Lt v 4
1

Conversely, assume (iii); we will show (i). For any s < t, any Upslg,. ..,y €8

B 4

5 and any Ay, 8g, .58y, WE have by (4.3), :

%

L ™

~ R(t,s

° Cov [X(t) ~ jrE2h X(s), i, aX(uy)]

= 1/2 (6 ()6 1/2 ok :

3 = Cov[A/2(6(1) —%) 6(s)}, A2 55 ai6(uy)) 4

~ N

o %

~ —af2 k 2 2)/2 E(G(t)G ]
=27 gk a6 D 2 qov (e ~%) 6(s), &, a,6(u;)] =0 >

N

.::: since G is Markov. Therefore, by Theorem 2.1, X is left weakly Markov, i.e. (i)

g~ holds. The equivalence of (ii) and (1ii) is now deduced by the symmetry. a

Corollary 4.1. Any sub-Gaussian weakly Markov SaS process with covariation function

R(t,s) # 0 for any t,s, is equivalent to a nondecreasing time change of sub~Brownian

motion.

Proof.

Formula (4.3) implies that the covariation function of a sub—Gaussian

process determines its finite dimensional distributions. Therefore, we have only

...................................
....................
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to demonstrate that the covariation function of a sub—Gaussian weakly Markov SaS
process can be realized by a time changed sub-Brownian motion. This is easy. By
Theorem 2.1 and (4.3), the covariation function of a sub-Gaussian weakly Markov
SaS process can be represented as R(t,s) = H(t)K(s)“"’1> for all s,t, where
K(t)/H(t) is positive and nondecreasing on T. Let G, (t) = H(t)B(r(t)), where B is
the standard Brownian motion, and 7(t) = 2[K(t)/H(t)]2(a—1)/a. It is
straightforward to check using (4.3) that the process X1(t) = A1/2G1(t) has R(t,s)
as its covariation function. Since X, is a time change of sub-Brownian motion, the

proof is complete. o

Among all SaS sub—Gaussian processes only very few and highly degenerate are
Markov. All these processes are characterized in the following simple fashion. We
say that a deterministic function a(t), t € T, is born at the level ay and dies at the
level aq if for some S{ < Sg, which may be boundary points of T, a(t) = ay for t < S4
(ort <sy), a(t) = a for t > sy (ort 2sy), and a(t) £ {a;,a,} outside of the above

intervals; Sy is the birth time and Sg is the death time.

Theorem 4.2. A SaS sub-Gaussian process given by (4.1) is Markov if and only if the
Gaussian process G has one of the following forms: G(t) = a(t) Y, or G(t) =
a(t){Y; 1(t <ty + Y, 1(t> to)} or G(t) = a.(t){Yl 1(t < tg) + Yy 1(t > to)}, teT,
where (Y1’Y2) is a jointly Gaussian vector in [RQ, g Y% = é‘Y% =1, ty€ T, and a(t) isa

real function that is born and dies at the level zero.

A technical result precedes the proof of the theorem.
Lemma 4.1. Lel Gl’ G‘Z’ G3 be i.i.d. standard normal random variables and let W be a
positive random variable not equal a.s. to a constant and independent of Gl’ GZ’ G3.
Then there is a Borel set B such that P(WG1 € B) > 0 and for any Xy € B the random
variables \\IG2 and WG3 are not independent given WGl =Xy
A AN A A AR A .:,—“» _“_-‘ W \.F\ - -_--. ------- _,‘_ SN YA LRI VO RN N AT AN,
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Proof. Suppose on the contrary that for almost every value Xy of WG, the r.v.'s ht
WGl and W62 are independent given WGI =X Then for almost any X{) Xo, W€ have :r:f
\
(4.4) fl()’lxl) zfz(}’lxl’xz) :~
for almost any y, where fl(' |x1) is the conditional density of WG3 given \\iG1 = Xq, )
l} 3
and f2(- le,x2) is the conditional density of WG3 given WG, = Xo, WG2 = Xg. We have ?".::".
St

122n) ™ A e [-(yEecd) (2w 1 dR ()

(4°5) fl(y|x1) =

12 W exp[x2/ (24%) 1dF (v) ’ N
122 2 Bexp [~ (y2exexl) /(2w 1R (w) &
(4.6) f-z()’lxl’xz) = ) 39 ) ’

12 5 exp [~ (x3+x5) / (24°) ]dF (w) 2

where F is the distribution function of W. It follows from (4.5) and (4.6) that '“
-"-.

f,(-]-) is continuous on RZ, and fo(-]-,-) is continuous on R3. We conclude that Y
(4.4) is equivalent to s

>,

v

- 2,2 2 :
(4.7) gy (v2ex2ex2) g, (<2) = gy (y2xd) gy (x2exd), N
EN

where N
.’::
_ g0 N 2 .::
g, (1) = [ow “exp[-r/(2v")]dF(w), r>0. S

L

By Holder's inequality we conclude that the left hand side of (4.7) is strictly ‘-»
larger than its right hand side for all triples (y,x1,x2) of the kind (O,xl,O). By \'
the continuity we conclude that there is an € > 0 such that (4.7) and, therefore, ;’
(4.4), do not hold for the triples (y,x;.xy) € (-c,)%. This contradicts the %
r":.

assumption that for almost any Xy and X9 (4.4) is true for almost any y. 8]

Proof of Theorem 4.2. Suppose that the sub—Gaussian process X given by (4.1) is

X @
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Markov. If all r.v.'s of the Gaussian process G are linearly dependent, then
G(t) = a(t)Yy for some standard normal r.v. Y,. Now assume G has two linearly
independent r.v.'s, say G(tl) and G(tz), ty <ty Furthermore, assume
8{G(t,)G(ty)} # 0, as the argument is even simpler in the case of independence.
Then we can write G(tz) = 24,6, G(tl) = a11G1 + 196y, where G, G2 are i.i.d.
standard normal r.v.'s and the coefficients 311, 819, 89 are different from zero.
Take any tg > tg. Then we can write G(t3) = a3lG1 + a3202 + a33G3, where G3 is a
standard normal r.v. independent of (G1’G2)' The process G is Markov by Theorem
4.1; therefore its covariance function satisfies the relation (2.4). Rewriting
this relation for the triple (tl,t2,t3) in terms of our particular representation

ofG(ti), i=1,2,3, we obtain

2 _
(11231 * 319239) 331 = (31391) (29q234),

and since a1 89 and a9y are different from zero, we conclude that ag9 = 0.

Recall now that by the assumed Markovianness of X(t), for almost any X9, X(ty)
and X(t3) are independent given X(t2) = Xy Since agg = 0, it follows that
alel/QG2 and a33A1/2G3 are independent given a21A1/2G1 =X Suppose first that
aq3 # 0. Then it follows that for almost any X{ A1/202 and A1/2G3 are independent
given AI/QG1 = xl/a21. But this is impossible by Lemma 4.1. Therefore agq =0. It
follows that G(t3) = a31G1, and thus for any t > tos G(t) is linearly dependent on
G(t2). The same argument shows that for any t < ty G(t) is linearly dependent on
G(t;), and that there is a t € [tl,tz] such that for any t,< t < tys 6(t) is
linearly dependent on G(tl), while for any t, <t <ty G(t) is linearly dependent
on G(tz). G(t,) itself has to be linearly dependent either on G(ty) or on G(t,).
This proves the dependence structure of G(t) described in the statement of the

theorem.
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Suppose now that there are points s; < sy < 83 such that a(s;) # 0, a(sz) =0
and a(sg) #0. Applying the assumed Markovianness of X(t) to the triple (s1 189,83)
shows that one of the following pairs of r.v.'s is independent: (A1/2Y1, A1/2Y1) or
(A%, aY2) or (AY2Y), AY%Y). The r.v.'s of the first two pairs are
obviously dependent, and those of the third pair are also known to be dependent
(see Lemma 2.1 in [6]). Therefore a(t) must be born and die at the level zero.
Since it is obvious that for any Gaussian process of the above form the
corresponding sub—Gaussian process is Markov, the proof of the theorem is

complete. )

In the particular case of a stationary sub—Gaussian SaS process we can draw

the following simple conclusion from the above results.

Corollary 4.2  The only weakly Markov stationary sub—-Gaussian SaS processes are the
sub—Ornstein~Uhlenbeck processes and the constant processes. The only Markov stationary

sub—Gaussian SaS processes are the constant processes.

Corollary 4.2 shows that the sub—Ornstein-Uhlenbeck process is the only
weakly Markov stationary sub—-Gaussian process. However, the class of sub-Gaussian
processes is not closed under linear combinations of its independent members.
Therefore a natural question arises: could we obtain a new weakly Markov
stationary SaS process as a linear combination of independent stationary sub-
Gaussian processes?

Let G1, GQ, - ,(}n be independent stationary Gaussian processes such that for
any t,

(4.8) é‘{Gi(t)Gi(O)} =p;(t), py(0)=1, i=1,2,...,n.

We assume that all the correlation functions PysPgs---sP, are different. Let
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A

A A, be i.i.d. random variables distributed according to (4.2) and

1, 2,-.-

independent of the Gaussian processes G1’G2’ ...,G . Let bl,b2, e ,bn be positive

.
real numbers. We will prove that if n > 1, the stationary SaS process

(4.9) X(6) =5, A2 6.(t), -w<t<a,
cannot be weakly Markov. We start with the following lemma.

Lemma 4.2. Let % S - Rl, i=1,2,...,n, be arbitrary distinct functions on a set S.
Then there is a finite subset {SI’SQ’ e ’Sk} ¢ S (k < n-1) and real numbers 6,,0,,...,0,
such that

K

ZJJS=1 03“"1(33') # EJ=1 0j¢i(sj), any i=2,...,n.

Proof. We prove the lemma by induction in n. For n=2 the claim of the lemma is

trivial, and one can choose k=1 and 01 = 1. Suppose that the claim of the lemma is

correct for n = n,- We shall prove this claim for n,+1 functions, P13¥95 1Py s
0

¥y 410 By the assumption of the induction we know that there is a set
0

{51,32, e ,sko} c S, and real numbers 01,02, - ,Oko, such that

k k
L A(l) = Eng 01¢1(SJ) "Zng 0J<P1(SJ) # O, any i:?,,,,,no_

ot If A(n0+1) # 0, then there is nothing to prove, so we assume that A(n0+1) = 0.

Then, there is an sko+1 € S such that "ol(sko+1) # "’n0+1(sk0+1)‘ Put
U 971(31( +1) —‘Pl(sk +1), i=2,...,n0.
0 0

Clearly, we can choose a real number 01( 1 satisfying the following conditions:
0
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(a) 0k0+1 # 03

he (b) 0k0+1 # —Ai/'yi for all such i=2,... Ny for which % £0.

L

Then

k +1 k +1

. 20 0991(3)#.;0 0J.<pi(sj) for any i=2,...,n

j=1

so that the proof of the lemma is complete.

N Proof of the claim. If the process given by (4.9) were weakly Markov, we would
: have for any t, any 7 > 0, any s; 2 0, i=1,...,k, any real numbers c, 01,...,0k,

that for some 0 < A €,

> ',
(4.10) Cov[X(t+7) — e ATX(t), X(t) + ¢ Zl§=1 0;%(t-5,)] = 0. 4
i : :
. Since the sub-Gaussian processes Ai/QGi(t), i=1,...,n, are independent, we -
¥ conclude by the properties of covariation (see Weron (1984)) and by (4.3) and :
. (4.10) that i
A 1/2 -\ 1/2 3
- 0 = £ b%cov[Al/2(a, (ter) - TG, (1)}, A0, (1) +c2‘§=1 056 (t-5))] 3

= 2725 b [Var(C, (1) +cz‘J‘ | 856, (t-s; gy (e2)/2, 3

s
-
e
.

(4.11)  Cov[6,(t+r) ~e ™76, (1), G, (t) +cEk 1 030;(t-s))]

:: - a/2vn ba [1+2Cuk

j=1 Jp (s ) +¢ )jk 21251 Hjolpi(sj'sg)](a_Q)/Q"

B L LML

[{p; (1) 7y +c$k pi(s5+7) -t RACHOE

F ot

ASNSAAS]

That is, for any t, any 7> 0, any s;2 0, i=1,...,k, any real c, 01,...,0k, we have

t
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¢ EIiI=1 El‘]?=1 Oj{pi(sjﬂ‘)—e—’\rpi(sj)}b?
X K
(4:12) [0 20Ty 00y(59) + P By Sy 0580 (55751 (D

= Sl b e g (N 1 2e T 03,(5) + PR B 0009 (s 5] (D2,

Since the correlation functions Pys--+spy are all different, we can find a 7

such that not all the expressions e"\r—pi(r) , i=1,...,n, are equal to zero. We can

A

assume, without loss of generality, that e
e—)\

T .
—pi(r) # 0 for i=1,...,n,, and

T_pi(T) =0 for i=n0+1, ...,n, for some 1 < n, <n. According to Lemma 4.2, there

are points s;20, and real numbers 0i’ i=1,...,k, such that

k .
Sj=1 0jp1(sj) # Z:l‘;=1 0jpi(sj)’ i=1,...,n.

Then for these fized values of TyS1s- s8> 61, e ,0k, we can rewrite (4.12) as

n
(4.13) ¢ Zril:l agl) (1+ Zep; + czaf) (a-2)/2 _ zi(z)l agz) (1+ 2C,ui+czo?)(a‘_2)/2

for certain real numbers a.(l), By 0.y i=1,...,0, a-(Q), i=1,...,n_. Then the fact
i i’ i i )

that for any 0 <d < 1/2, any p, the following family of functions of c,

{(1+ 2ep; +cza§)_d, c(1 +2(:;ei +C2a? _d, i=1,...,p}

is linearly independent as long as all the pairs (ui,a?) are different, implies

that a§2) = 0. But we know that ag2) #0. This contradiction proves that no process

of the kind (4.9) can be weakly Markov. 0
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5. MOVING AVERAGES

A SaS moving average is a process of the form
X(t) = fo_owf(t—S) dL(s), -w<t<ow,

where L is an independeeeently scattered SaS measure on (lRl, $1,Leb) , i.e. {L(s),
~<s<w) is a SaS Lévy motion, and f € L (R',.#,Leb). X(t) is clearly a
stationary process. When f vanishes on the negative line, X is a nonanticipating

moving average and
(5.1) X(t) = /° f(t-s) di(s).

A nonanticipating moving average is called invertible if sp{X(t), t<r}

sp{AL(t), t<r} é sp{L(t)-L(s), s<t<r} for all r, i.e. the increments of L
represent the innovations of X.

We now determine all nonanticipating, invertible SaS moving averages which
are left weakly Markov; these are in fact Markov, and we shall show that they are
precisely the SaS Orustein-Uhlenbeck processes, thus obtaining an integral

representation for these processes.

Theorem 5.1 X is a left weakly Markov, nonanticipating, invertible, SaS moving average

with 1 < a< 2, ifand only ifit is of the form
(5.2) X(t) = aft e SL(s), wctca,
forsome0 < a, A <o, ifand only ifit is a SaS Ornstein—-Uhlenbeck process.

Proof. Let X be a nonanticipating, invertible SaS moving average as given by

(5.1). Then X is a left weakly Markov iff for some 0 ¢ A < w,

Cov[X(r) - e 7X(0), Y] = 0

et S S '\.N ) v LIRS ~ ] T T T T R S
.- ' $ .("r.ﬂ Ve -.rJf.err.ﬂ.r- A AP e e e el LS T
‘\)ﬁ'\.’t 'y‘\'- "n " "1 ) \Jhl"-"\ "\'h'ﬂt_v‘hl \.'\-‘F\’\-‘\-ﬂ-r..’ﬁ."
Lt N" Lol 'o.l‘.. ‘.. A Lrlo Q.M.A.. AR MY

‘pr
'x‘q.

s

X
LY

Pt

»

5 an

v,

he ity
3 :1. 2

. ¥

s m &~

2
.

4

A o7

e
-',l., v {. OO

’

AR AR

A
h)
L

0wy,

.
P 2l



31
[
' .
. . _ ~
; for all 750 and all Y € Sp{X(t), t<0} = 5p {AL(t), t<0}, i.e. forallY = /O gdi X
Y
_ where 1 [g(s)|%s <w; .e. iV 10, VgL, ((w,0), H,0),Lleb), y
; -
) <~
' -Ar 0 A
; = Cov[JT_f(r-s)dL(s) - [0 f£(=s)dL(s), J°_g(s)dL(s)] 5
, =10 £(r8)g(s) ¥ s ~ e [0 f(-5)g(s)* s, N
8 e
) -~
Now putting g(s) = 1(—x 0)(5), x > 0, we obtain that if X is left weakly Markov then G
forall r>0,x>0, .
A 1 t(r-s)ds = 10 f(=s)ds,
g i.e N
| +X =AT X N
) j: f(u)du = e fof(u)du, ),
| =
# and putting F(x) = fz)( f(u)du, X
RS
W N
P(rex) = F(r) + € *TF(x), V7, x>0. +
/ :
. The parameter A cannot take the values 0 or +w. Indeed, if A = +o then A
. ‘ﬁ'.
. F(r+x) = F(7), ¥ 7, x>0, implies F(x) = Const., x > 0, hence f(x) =0 a.e. on (0,x) 3
)
2 and X(t) =0 a.s. forallt, i.e.the process X is identically zero. 0On the other o
hand, if A =0 then F(r+x) =F(7) + F(x), V7, x>0, implies F(x) = cx, x > 0, hence
f(x) =c a.s. on (0,0) which does not belong to La(Leb) unless ¢ = 0 in which case
again the process X is identically zero. It follows that 0 < A <. Interchanging r L
S
- and x we also Lave :
2 D ‘ "
F(r+x) = F(x) +e "7F(r), V1, x>0, )
¥ and thus \
¥ -~
: F(x) _ F(7) i
: l—e—)‘x = =57 Yr,x>0. ,
;-
“

g
"::»)'.r
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AX 4.e. on (0,0). In view of the

Hence F(x) = c(l—e’\x), x>0, and f(x) = che”
symmetry of the distribution of X, the finite constant a=cA may be taken
positive. Thus (5.2) is shown.

Conversely, it is clear that the process (5.2) satisfies the necessary and
sufficient condition for being left weakly Markov; is invertible, in fact it is the
stationary solution of the stochastic differential equation X'(t) + AX(t) =

al'(t), where L'(t) is SofS white noise; and is Markov, as follows from (s < t)
(5.3) X(t) = e E)x(s) v a st e War )

where the second term is independent of {X(u), u < s}.

We finally show that the process (5.2) is the SaS Ornstein-Uhlenbeck process

-t
A
Y(t) = (i—i—)f7-a L(ea t), —oo<t<oo.

Indeed
a _ ait —aA(t-s),. _ a?
”X(t)”a =a [_ e ds = k>

—

o —alt o
a _ae aAt _ a
V(NS = 28— et = 20

and thus Z{X(t)} = Z{Y(t)}. From (5.3), using the independence of the two terms

on the right hand side we have fors< t,

£ {exp[irX(t)]]X(s)} = exp{ire *(V™S)X(s) - |ra|® gea/\(t—u)du}

= exp{ire—’\(t_S)X(s) - Irlaaa(l—ea’\(t_s))/(a/\)}.

At

On the other hand. from (2.13) with H(t) = ae 2 (a0) ¥, 7(t) = @t ve have

& {exp[irY(t)]|Y(s)} = exp{ire_’\(t_S)Y(s) - |r|aaa(l—e—a)‘(t_s))/(a/\)}.
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Therefore £ {X(t)|X(s)} = £ {Y(t)|Y(s)} for all s < t. Since both X and Y are
Markov it follows that &£ (X) = £(Y). It is clear that the SaS Ornstein-Uhlenbeck
processes Y exhaust the class of all SeS Ornstein-Uhlenbeck processes (cf.

(2.14)). 0

When X is a SoS moving average and f vanishes on the positive line, we say that

X is fully anticipatory and
X(t) = j°t°f(t-s) dL(s).

A fully anticipatory moving average is called invertible if sp{X(t), t>7} =
sp{AL(t), t>r} for all r, i.e. the increments of L represent the backward
innovations of X. It is easily seen that X(t) is fully anticipatory and invertible
(with kernel f(-j) iff X (-t) is nonanticipating and invertible (with kernel
f(--)). Thus the only fully anticipatory, invertible SeoS moving averages

(1 < @ <2) which are right weakly Markov are the Markov processes
V(-
(5.4) Y(t) = a' 2er (TPdL(s), <t <,

where 0 <a', A' <, which have covariation function

(0) e (et s,

Theorem 3.2 (iii) implies that tlie two classes of Markov processes introduced in
this section, the nonanticipating and the fully anticipatory invertible SaS

moving averages. are clearly distinct when 1 < a < 2.
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6. HARMONIZABLE PROCESSES

A complex harmonizable SaS process has a harmonic spectral representation
(6.1) X(t) = /% e'tNI(u), —w<t<w,

where Z is a complex, independently scattered, isotropic SaS measure on (iR1 , Vs i)
with g a finite symmetric measure. For every complex—valued function ge€ La(/t) the
r.v. [gdZ is complex isotropic SaS with & exp{RezfgdZ} = exp{-|z|% [|g| %y}, for

complex z. Covariation is given by

Cov{/g,dZ, [gydZ] = fglgéa"bdu

for all g+ 8 € La(u), where z<%” = Izlq_lf. All properties of covariation and
regression used here in the real case are also valid in this complex isotropic case

(see [4]).

The harmonizable process (6.1) is stationary and has covariation function

(6.2) R(t) = [ e®Uqu(u).

—00

Taking its real part would provide a real harmonizable process, but it is more
convenient to work with complex quantities when dealing with Fourier type
representations. Note that when o=2 all (continuous in probability) stationary
Gaussian processes are harmonizable, while when 1 < @ < 2, the harmonizable, the
nonanticipating movirs averages and the sub—Gaussian SaS processes form disjoint

classes [6]. We now show that (nontrivial) harmonizable processes cannot be

weakly Markov.

Theorem 6.1.  The only harmonizable SaS process with 1 < « < 2 which is left or right

weakly Markov is the constanl SaS process.
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Proof. Let X be harmonizable SaS as in (6.1). Assume furthermore that X is, say,

left weakly Markov. Then R(t) = R(O)e"’\t for all t > 0 and some 0 < A < w. The

continuity of R in (6.2) excludes the value A =w. When XA =0, X is a constant SaS

L e

process with y concentrated at 0. Assume from now on that 0 < A < w. Since R is an

K s e

even function (cf. (6.2)) it follows that

(O}

R(t) = R(0) e Ml forallt,

PR

‘(. 'l‘i'l-...-'~.-

;o and by (6.2),
¥ détgu} - /\R!()! .
u

G T(A%+u®)

Since X is right weakly Markov, it satisfies

<
N St “j';'}'{ 2

¥ Cov[X(7) —e X(0), Y] = 0, ¥r20, VYeSp{X(s), s<0}.
Taking ¥ = X(0) + X(~v) = [%_ (1+¢"V9)dZ(u) withv 20, we obtain for all 7, v2 0,

. - —0 ; - .
g [2(1+cosvn)]

DR R A A g AN

y Introduce for each v > 0 the measure 4 by

d;zv(u) 1

‘
. du (1+cosv1y_-a/2 (/\2+u2)

..- ',".‘ .'- "- ".-‘.- 51- (A.' ‘.-' - '; ‘; .

Then p, is symmetric and finite since for vu ~ (2k+1)7, 1 + cosvu = [vu—(2k+1)7r]2/‘2

and 2(1-a/2) =2 -a< 1. Wehave forall r, v>0, '3

o . iTU ivu _=AT oo ivu :
f_we (1+e )duv(u)—e f_w(1+e )duv(u). N
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oA Let fv( -) be the characteristic function of the probability measure uv/uv([RI) .

Since b, is svmmetric, fv is real and even, and for all 7, v> 0,

(]
..i“.f s %

1 © A —AT
j_m (1+cosvu)dp, (u) = e "'b(v).

f (r)+f (r+v) =e—'\T——1—
Y Y u, (R) .

Pt
a, &, &

b'

" 3
v

It follows that for all k=1,2,..., andv, 720,

1 a2 z

; ".~‘.-".".".'

£,(re2kv) = £ (7) —eMb(v) (1me Mae Mo (k) AV

‘ -2k Av ‘
o ~AT I—-e !
- = f,(r)-e " b(v) ——7> ]

1+e

and thus

>
- Lin £ (re2kv) = £ () -2 v vy,

. ko0 1+e
% But since f is the Fourier transform of an absolutely continuous, finite measure,
. by the Riemann-Lebesgue lemma, f(w) = 0. Hence f (7) = e—’\rb(v)/(1+e_’\v),

4 Y 7, v>0, and by the symmetry of fv,

£ = 2 ATy sy v,

1+e

SR
. PP

)
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The uniqueness of Fourier transform now implies that for any v > 0,

-

e

a7, 22 = b(vL ,\T 2 for almost any u .
(1+cosvu) (AT+u%)p (RY)  1+e Vor(Ac+ .

LN

and thus

=Av
- (1+cosvu)1—a/2 = —I—QLlL y UE€ R',
- A b(v)a, (RD) ‘
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which is a contradiction, as the left hand side depends on u while the right hand

-
T

side does not. It follows that X with 0 < A < » cannot be right weakly Markov and

l,‘ similarly it cannot be left weakly Markov. g o
; .
- :
- The proof of Theorem 4.1 provides an example of a stationary SaS process with 5
* covariation function R(t) = R(O)e_’\ltI (0 < A < @) which is neither right nor left j
2
E weakly Markov. In fact this is a harmonizable process with representation ::
58 e
itu 1 2
‘ (6.3) X(t) = [R(O)A/7] [ e RYNIC dZ(u) U
g - (ueeA%) ¢ -
: ¢
where Z is complex isotropic SaS motion. N
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P, }
B .
k. 7. A FAMILY OF ONE-SIDED WEAKLY MARKOV PROCESSES 3
3]
::' Every left weakly Markov process constructed in earlier sections is also ¢
:?'. right weakly Markov, and vice versa. In this section we construct non—Gaussian Sa$ K
> $
¢ processes which are left weakly Markov processes but are not right weakly Markov. p
" and vice versa. Thus for non—Gaussian SaS processes weak Markovianness is not a
_, symmetric property. For simplicity we consider the case of stationary processes.
¢
. Lemma 7.1.  Let )(1 and X2 be independent left (correspondingly right) weakly Markoc
¥ :
b stationary SaS processes with covariation functions satisfying :
3,
' f
- b
',3 for allt > 0 (correspondingly allt < 0), i=1,2, and some Iy, Ty, a>0. Then for any real ',"
numbers b1 , b2, the process 'r
e X(t) = by X (t) + by Xo(t), —wm<t <o, :
: »
:' is left (correspondingly right) weakly Markov stationary SaS process. Q
v, Proof. Only weak Markovianness requires proof. We assume that the original A
r~ processes are left weakly Markov. For any 7 > 0, any Upyeoonly < 0, any real E
' CiaenesCyy WE have, using the independence of )(1 and X2, R
; a7 ;
b Cov [X(7) - X(0), & 1 1 % X(u; )] X
: ]
X -a - -
. = Cov by {X, (1) =e™7X, (0)} + by{X, (1) — 727X, (0)}, :
W K k :
blﬁlch(u)+b E_1CX2( ] ;
: = [by | % Cov[X (1) - X, (0), Zi_; c; X (u))] =

-

+ [by]* Cov [Xy(7) = € 2TKy(0), T, 5 Xy(u))]

L T AN YY) T

.........
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because of the left weak Markovianness of X1 and X2. Theorem 2.1 implies that X is

left weakly Markov. 0

Recall that we have introduced three families of weakly Markov stationary Sa$S
processes. The SaS Ornstein-Uhlenbeck processes (2.13), the inverted SaS
Ornstein-Uhlenbeck processes (3.3), and the sub—Ornstein-Uhlenbeck processes in
Section 4.

Fixa>0. Let X1 be SaS Ornstein-Uhlenbeck process such that

Ry(t) = e %, 0.
Then by (2.15) we have
Ry(t) = ele-l)at ¢ g

Similarly, let X, be inverted SoS Ornstein-Uhlenbeck process with

Ry(t) = e2F, £20.
Then
(t) = /(@D ¢ o,

Finally, let X5 be sub-Ornstein-Uhlenbeck process with Z:
-
Ry(t) = e, t20. Y
A
IS
Then (4.3) implies that ;‘
Ry(t) = e, t<o.
=
The three processes Xl, X2, X3 are assumed to be independent. Let bl’ b2, b3 be .
nonnegative numbers, at most one of which is equal to zero. Define a new stochastic
process
(7.1) X(t) = blxl(t) + b2X2(t) + b3x3(t), w<t<w.
)
N
‘\1" J'\{‘\ w"w)-( .1' ', _\')‘(\, -v '\-* '(_ , ',. 'v?-)‘p.}_ ‘)’-\“-‘ ﬂ')"—""" _—\ —‘-___‘:_ L w b“l"‘\l



By Lemma 7.1, X is left weakly Markov stationary SaS process. Using the

independence of Xl, X2, X3 we obtain
R(t) = Cov[X(t),X(0)]
=b% Cov[X, (t), X (0)] + b3 Cov[Xy(t),Xo(0)] + b3 Cov[Xs(t),X4(0)]

=bY R (t) + bJ Ry(t) + b3 Ry(t)

(bY + b + bg)e 2" , £20,
_{ b?e(a_l)at N bgeat/(a—l) +b§'eat . <0,

' and this is not the covariation function of a right weakly Markov stationary SaS

process (cf. Section 2). Therefore, (7.1) defines a whole family (with parameters

a,bl,

weakly Markov.

It is clear that in a similar way we can define a family of right weakly Markov

SaS processes which are not left weakly Markov.
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91b3) of left weakly Markov stationary SaS processes that are not right

f.‘
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